
Convergence of Series I: In-Class Exercises

At this point, we have the following resources for determining the convergence/divergence
of series:
The nth term test
Evaluating the sequence of partial sums
The Integral Test
Geometric Series

p-Series:
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Limit Comparison Test
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The series converges because it is a geometric series
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Note that lim
n→∞
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= ∞ since the degree of the numerator is greater than the degree

of the denominator. We conclude that the series diverges by the nth term test.
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We notice that the dominant terms in the numerator and denominator are 2n and 3n, re-

spectively, so we expect this series to behave a lot like the geometric series
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converges by the Comparison Test.
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We suspect that this series will diverge because ln approaches 0 more slowly than 1
n

and the

harmonic series
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diverges. To show that this is indeed the case, we use limit compari-

son:
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=∞. This application of the limit comparison test shows

that 1
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indeed approaches 0 more quickly than 1
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, and therefore
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We suspect that the dominant term in this series will be the 1
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. Therefore, a comparison

with
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comes to mind as a possibility.

Indeed: 3
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4n−1 is a geometric series with |r| = |1
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| < 1 Since
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converges by the Comparison Test.

Note: Several of the above series can also be tested with the Integral Test. If you did
not use this method, try it for a few.

Solution to the quiz question:
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This pattern of cancellation continues, yielding sk =
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By definition,
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Therefore, the series converges to 1.
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