Convergence of Series I: In-Class Exercises

At this point, we have the following resources for determining the convergence/divergence
of series:
The n'* term test
Evaluating the sequence of partial sums
The Integral Test
Geometric Series
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Note that lim ————— = oo since the degree of the numerator is greater than the degree
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of the denominator. We conclude that the series diverges by the n'* term test.
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We notice that the dominant terms in the numerator and denominator are 2" O(zjmd 3" re-
spectively, so we expect this series to behave a lot like the geometric series Z(%)”_l in

n=1
. =1
the long term. In fact, for n > 1,%% = %(%)"*1\% < (3)"'. We know that Z(g)n_l
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is a convergent geometric series since |§| <1,s0 E converges by the Comparison Test.
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We suspect that this series will diverge because In approaches 0 more slowly than % and the

harmonic series Z — diverges. To show that this is indeed the case, we use limit compari-
n
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son:

T m —— = oo. This application of the limit comparison test shows
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that % indeed approaches 0 more quickly than ln(Ln)’ and therefore E m diverges.
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We suspect that the dominant term in this series will be the 4%. Therefore, a comparison

= 3
with Z g comes to mind as a possibility.
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Indeed: 2+ < &, and Z i Z(Z) is a geometric series with |r| = |1| < 1 Since
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i i converges i 3 converges by the Comparison Test
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Note: Several of the above series can also be tested with the Integral Test. If you did
not use this method, try it for a few.

Solution to the quiz question:
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This pattern of cancellation continues, yielding s, = ;(ﬁ T 1) =1- el
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Therefore, the series converges to 1.



